Table of Contents#
1. Introduction
2. Importing data in colab notebook
2.1 Importing data from local storage
2.2 Importing data from Google Drive
2.3 Importing data from a remote URL
2.4 Importing data from a GitHub repository
2.5 Google Cloud Storage (GCS)
3. Data Wrangling
3.1 handling missing values
3.2 Dealing with outliers
3.3 Resampling and aggregation
3.4 Handling inconsistent formats
3.5 Feature engineering
3.6 Lag Plots
3.7 Normalization and scaling
4. Time Series Concepts
4.1 What is a Time Series?
4.2 Applications of Time Series Analysis
4.3 Types of Time Series Data
4.4 Time Series Components
4.5 Time Series Decomposition
4.6 Stationarity and Non-stationarity
5. Exploratory Data Analysis (EDA) for Time Series
5.1 Visualizing Time Series Data
5.2 Identifying Trends and Seasonality
5.2.1 Additive and Multiplicative Decomposition
5.2.2. Moving Averages(Smoothing)
5.2.3. STL Decomposition (Seasonal-Trend decomposition using LOESS)
5.3 ACF and PACF plots
6. Data Prepration
6.1 Data cleaning
6.2 Time alignment
6.3 Resampling
6.4 Smoothing
6.5 Differencing
6.6 Normalization
6.7 Feature engineering
7. Stationarity
7.1 How to make a time series stationary
7.1.1 Differencing and its Importance
Example Code
7.1.2 Seasonal Decomposition
8. Discovered a suite of classical time series forecasting methods
8.1 Time Series Forecasting
8.2 Concerns of Forecasting
8.3 Examples of Time Series Forecasting
8.4 Classical time series forecasting methods
9. Metrics
9.1 Mean Absolute Error (MAE)
9.2 The mean error (ME)
9.3 Root Mean Squared Error (RMSE)
9.4 Mean Absolute Percentage Error (MAPE)
9.5 Symmetric Mean Absolute Percentage Error (SMAPE)
9.6 Theil’s U-Statistic
9.7 MRAE
10. Classical models
10.1 Autoregression (AR)
10.2 Moving Average (MA)
10.3 Autoregressive Moving Average (ARMA)
10.4 Autoregressive Integrated Moving Average (ARIMA)
10.5 Seasonal Autoregressive Integrated Moving-Average (SARIMA)
10.6 Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors (SARIMAX)
10.7 Vector Autoregression (VAR)
10.8 Vector Autoregression Moving-Average (VARMA)
10.9 Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX)
10.10 Simple Exponential Smoothing (SES)
10.11 Holt Winter’s Exponential Smoothing (HWES)
11. Deep Learning for Time Series Forecasting
12. Model selection
12.1 Recurrent Neural Networks (RNNs)
12.1.1 Single layer LSTM
12.1.2 Stacked LSTM
12.1.3 Bidirectional LSTM
12.1.4 Encoder-Decoder LSTM
12.1.5 Attention-based LSTM
12.1.6 Hybrid RNN model
12.2 Convolutional Neural Networks (CNNs)
12.2.1 1D CNN
12.2.2 Dilated CNN
12.2.3 Temporal Convolutional Network (TCN)
12.2.4 ConvLSTM
12.2.5 Hybrid CNN models
12.3 Transformer Models
12.3.1 Transformer for Time Series Analysis
12.3.2 Implementation Details for TSA
12.3.3 Challenges and Considerations
12.3.4 Recent Developments
Conclusion
12.4 Autoencoders
12.4.1 What is an Autoencoder?
12.4.2 Autoencoders in Time Series Analysis
12.4.3 Implementation Details for TSA
12.4.4 Challenges and Considerations
12.4.5 Conclusion
12.5 Generative Adversarial Networks (GANs)
12.5.1 Basics of GAN
12.5.2 GANs in Time Series Analysis
12.5.3 Implementation Details for TSA
12.5.4 Challenges and Considerations
12.5.5 Conclusion
13. Feature Engineering
14. Preprocessing using Deep Learning
14.1 Handling missing values using an RNN
14.2 Outlier detection using an autoencoder
14.3 Handling seasonality and trends using a CNN
15. Time Series Analysis toolkits
15.1 Scikit-learn
15.1.1 How to use
15.1.2 Example Code
15.2. Statsmodels
15.2.1 How to use
15.2.2 Example Code
15.3 Pandas
15.3.1 How to use
15.3.2 Example Code
15.4 Prophet
15.4.1 How to use
15.4.2 Example Code
15.5. sktime
15.5.1 How to use
15.5.2 Example Code
15.6 Tslearn
15.6.1 How to use
15.6.2 Example Code
15.7 Darts
15.7.1 How to use
15.7.2 Example Code
15.8 PyFlux
15.8.1 How to use
15.8.2 Example Code
15.9 SFRESH
15.9.1 How to use
15.9.2 2.Example Code
15.11 Pastas
15.11.1 How to use
15.11.2 Example Code
16. NeuralProphet
16.1 Installation
16.2 Basic Usage
16.2.1 Importing Libraries
16.2.2 Generating Synthetic Data
16.2.3 Model Training
16.2.4 Forecasting
16.2.5 Manualy Visualization of Forecast
16.2.6 Visualizing Components
16.2.7 Visualizing change points
16.2.8 Manual Visualization of Change Points
16.2.9 Plot using plotly backend